
User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 1

Attention: during the operation of the debug probe (the first revision) with the target, the hardware
reset of the latter is allowed exclusively by means of the debugger; any other methods of hardware
reset may lead to failure of the debug probe.

Key features of the utility CMSIS-DAP1

 Operates with the main and informational (version 1.5 or upper) flash memory;

 Suppots mass erase;

 Saves a program from microcontroller to a file in the HEX2 format;

 Writes a program to the microcontroller using files in the HEX2 and ELF3 formats;

 Compares the recorded program with the data in the files in HEX2 and ELF3 formats.

The software CMSIS-DAP provides:

 Downloading of the program into RAM with subsequent launch.

 Debug output via SWO interface with the ability to save the received data to a file

in the TXT format.

 Reading and writing of the core registers and variables in memory.

 Hardware RESET signal generation.

 Update of the firmware of the debugger.

 The ability to execute user scripts before reading, writing and erasing of the

memory.

 Support of the UART-loader by JSC «ICC Milandr» company.

1 Download CMSIS-DAP flash programming software (the utility) at
https://ic.milandr.ru/upload/iblock/665/d8vms7yinqwlkex79ddsh04ga9af8cgr/CMSIS-DAPi.zip
2 Requirements for the HEX format file:
- sort addresses must be in the ascending order;
- max bytes length of a row – 16 bytes.
A file in the hex format obtained with CodeMaster ARM development environment doesn’t meet these requirements, so
you must follow the instruction: http://support.milandr.ru/base/spravka/32-razryadnye-mikrokontrollery/sredy-otladki-i-
programmatory/36885/

3 Only ELF format files obtained with IAR EWB and ARM KEIL environment.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 2

Description of the program interface CMSIS-DAP

«Debug probe kit for chips with Cortex-M core TSKYA.468998.109 (the original part number is

ТСКЯ.468998.109)» can work with the software «CMSIS-DAP vx.y» developed by the JSC «ICC

Milandr». The general view of the program is given in Figure 1.

Figure 1 - The general view of the utility dialog window4

The utility contains three dialog tabs:

1. Memory programing tab;

2. SWO output data display tab;

3. Core registers and variables in memory access tab.

There are settings and help buttons in the right upper corner.

4 The view of the main window of the «CMSIS-DAP utility» can differ depending on the utility version

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 3

Memory Programing Tab

Figure 2 - Memory programing tab

The first tab of the utility «CMSIS-DAP vx.y» - «Memory programing tab» (Figure 2) allows

to work with the memory of the target. Allowed operations are read, write, verification of the flash

content and erase. The memory erase operation executes the mass erase of the flash of the target

device.

Attention! The operation with the flash is disabled while SWO data display is running

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 4

Writing to the Memory

To download the data you need to:

Figure 3 - Selecting a file for programing

1. Select the required loader from the drop-down list;

2. Select a file (hex2 or elf3) for programming. After selecting, there will be the full path to
the file and its CRC value below the button «100 001»;

3. Press the button «the up arrow with the horizontal line» to start downloading and wait

for writing operation to complete.

 If the loader supports the ability to work via UART, then you can enable this

mode by switching the slider. After that, you can set the required baud rate

(Figure 4).

Figure 4 - UART loader set up

Then you must set the UART loader mode for the microcontroller and fulfill the connection as

in Table 1.

Table 1

The number of the pin of the debug probe The number of the pin of the target

17 TX

19 RX

15 Reset

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 5

1 Vcc

1. Connect the grounds.

2. The connection of the Reset pin is not obligatory but if not connected you must reset

the target yourself before using the UART interface5.

In the current version of the software the data can be written to RAM at the program launch

and read into a file using the UART loader.

 If the loader supports supplementary options, then you can enter them to the

field next to the button «100 00 and the tick» (the comparison data):

Figure 5 - Popup window with additional options

When you hover over this field, a tooltip describing the available options will appear. The list

of the options for each built-in loader is given in the section «Built-in loaders».

Verification of the recorded data

To verify the data you need to:

1. Select a file (hex2 or elf3) for programming. After selecting the file, its full path and

the CRC value will appear below the button;

2. Press the button «100 00 with the tick» to start verification and wait for the

verification operation to complete;

3. The result will be displayed below the current progress status bar. The CRC of the

memory data will be displayed too. (Figure 6).

5 Attention: during the operation of the debug probe (first revision) with the microcontroller, the
hardware reset of the latter is allowed to be performed exclusively by means of the debug probe; any
other methods of hardware reset may lead to failure of the debug probe.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 6

Figure 6 - CRC of the memory data

Reading into a File

 To read data from the memory to a file you need to:

Figure 7 - Reading data into a file

1. Specify the start address and the size of the loaded data in bytes;

2. Press the button «the down arrow and the horizontal line» to read into a file and

specify a file name to save the data;

3. Wait for the process to complete. After that, the amount of data which has been

read and CRC value will be displayed.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 7

SWO Output Data Tab

The 'SWO Output Data' tab (Figure 8) shows the data received via the debugger using the

SWO protocol. All received data can be exported to a plain text file (.txt).

Figure 8 - SWO output data tab

To receive the data you need to:

1. Specify the desired SWO interface exchange frequency (lower then 1000000) (the field

«Частота SWO») and set the current working frequency of the target (the field «Частота CPU»);

2. Press the button «Старт» (which means «to start»);

You need to press the button «Сохранить» (which means «to save») to save the received

data to a plain text file. The button «Очистить» (which means «to clear») erases all data in the

SWO output field.

Attention! SWO is unavailable if the JTAG interface has been selected or any

operation with the memory is being fulfilled.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 8

Core Registers and Memory Variables Access Tab

Figure 9 - Core registers and memory variables access tab

The third dialog tab, labeled «Core registers and memory variables access tab» (Figure 9),

enables reading and writing of the core registers and memory variables. Press the button

«Подключить» («Connect»), to enable the data entry fields. When accessing memory, you can

select the variable display format: binary, hexadecimal, or decimal.

While reading core registers, the core briefly stops for about 5 ms. It’s important if the

program controls the equipment which is critical to the response time.

When the reset button is pressed, a hardware RESET signal is generated (the RESET pin is

set to a low level for ~100 ms).

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 9

The Utility Settings

 Click the «settings» button to open the utility settings dialogue window (Ошибка! Источник

ссылки не найден.):

Figure 10 - The dialog window "Настройки" ("Settings")

JTAG and SWD interfaces can be enabled in this dialogue. The interface speed can be

defined – 100kHz, 500kHz or 1MHz. The settings are applied immediately after closing the window.

The Debugger Firmware Update

If the firmware version of the debug probe isn’t actual, the window will appear with a

suggestion to update the software (Figure 11).

Figure 11 – The notification about the necessity to update the firmware

After pressing the button «Да» («Yes») the firmware update procedure will start in the debug

probe. The LED will change its color to the blue. When the update is complete, the LED will turn red

again.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 10

Pin assignment of the Debug Probe

Different variants of pin assignment of the debug probe in different working modes are

shown in Figure 1:

Figure 1 – Variants of pin assignment

It is necessary to provide the voltage on the Vref pin. The permissible voltage range is (2.7 - 5.5) V.

Attention! It is impossible to supply the voltage for the target board from this debugger

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 11

Description of the LED Indication of the Debugger

There is a full-color LED on the top of the case. It can turn different indications depending on

its current state (Table 2).

Table 2 - Description of the LED indication of the debugger
LED state Description

Flashing red No USB connection

Permanent red The debugger is in the standby mode

Permanent blue The debugger is in the software update mode

Single blue blink The reset pin was set to low, and then to high level

Permanent green The debugger is connected to the target.

Blinking green The debugger transmits data in the UART mode

Blinking red The debugger receives data in the UART mode

If the debugger is used with the development environment then the state of the LED is defined

by the IDE. For example, when working in the IAR EWB the permanent yellow signals that the

application is launched while the permanent green indicates that the program is suspended.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 12

Description of the CMSIS Utility

Working with memory

The utility uses the loader mechanism to write data to the target. The loader is a compiled

program for the target. It contains program functions which provide erasing, writing and verification

of the data. This program is loaded to the RAM of the target.

The program is compatible with bootloaders used in the IAR EWB. If there is the need to add

one’s own bootloader, one has to create it in accordance with the guide

http://supp.iar.com/filespublic/updinfo/004916/arm/doc/flashloaderguide.pdf. Then the loader is

compiled and 3 files are added to the folder «flashloaders» located in DAP.exe program directory:

1. loader.flash

2. loader.out

3. script.js

*.flash
The file contains the flash memory description. Tags «macro» and «aggregate» are not used.

Special tags are added:

 uart – if set to 1, then there is a UART-loader in the target device. The UART-loader by JSC

«ICC Milandr» is only supported;

 uart_baud – the UART speed to synchronize with the loader;

 js – JS-code file.

*.out
An ELF file with the loader for the flash.

*.js
An optional file with the JS code. It is performed before reading, writing and erasing of the

memory. One can reset a specific protection, stop Watchdog and do other preparatory actions in it.

When the program is launched, it scans the «flashloaders» directory for the *.flash files. When

the file is found, the program attempts to open *.out file defined in the exe tag. The full path to the file

is ignored, the file name is only used. When the file is successfully opened, an item with the same

name as the name of the *.flash file is added to the list of the loaders.

The mass erase of the memory during the memory initialization is supported. The

FLAG_ERASE_ONLY flag is set while executing FlashInitEntry to provide the mass erase. If this

option is not supported by the loader, then the memory will be erased sector by sector.

The function FLASHChecksumEntry is called to check the CRC of the written data. If this

function is not available in the loader, then the written data will be read with subsequent CRC

calculation.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 13

Built-in Loaders

 К1986VE92QI
Additional options

The loader works with the main flash memory (128 KB) by default (when the field is empty).

"--info_memory" – the loader works with the informational flash memory (4 KB).

"--erase_all" – mass erase operation, affects the two areas of the flash memory: the main
and the informational.

 К1901VC1QI (SWD mode only)
Additional options

The loader works with the main flash memory (128 KB) by default (when the field is empty).

"--info_memory" - the loader works with the informational flash memory (4 KB).

"--erase_all" - mass erase operation, affects the two areas of the flash memory: the main and
the informational.

 K1986VE1QI
Additional options

The loader works with the main flash memory (128 KB) by default (when the field is empty).

"--info_memory" – the loader works with the informational flash memory (4 KB).

"--erase_all" – mass erase operation, affects the two areas of the flash memory: the main and
the informational.

 K1986VK01GI
Additional options are not supported.

 K1986VK214

Additional options
The loader works with the main FLASH-memory (64 KB) by default (when the field is empty).

Attention! While working with the informational memory it must be taken in account
that the first block of informational flash memory contains the bootloader.

"--info_memory" – the loader works with the informational flash memory (4 KB).

"--info_memory_2" – the loader works only with the second block of the informational flash
memory (2 KB). Programming and erasing of the first block will be ignored.

"--restore_boot" – the bootloader will be restored if mass erase is performed with this option.

"--erase_all" - mass erase operation, affects the two areas of flash memory: the main and the
informational with the bootloader.

Main area, two blocks * 32 KB: 0x0000_0000-0x0000_FFFF

Informational area, two blocks * 2 KB (register access):
 - block 1: 0x0000_0000-0x0000_0800
 - block 2: 0x0000_8000-0x0000_8800

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 14

 K1986VK234.

The loader works with the main FLASH-memory (128 KB) by default (when the field is
empty).

Attention! While working with the informational memory it must be taken in account
that the first block of the informational FLASH memory contains the bootloader
"--info_memory" – the loader works with the full informational FLASH memory (8 KB).

"--info_memory_2" – the loader works only with the second block of the information flash
memory (6 KB). Programming and erasing of the first block will be ignored.

"--restore_boot" – bootloader will be restored if mass erase is performed with this option.

"--erase_all" - mass erase operation, affects the two areas of the flash memory: the main and
the informational with the bootloader

Main area, four blocks * 32 KB: 0x0000_0000-0x0001_FFFF

Informational area, four blocks * 4 КБ (register access):
 - block 1: 0x0000_0000-0x0000_0800
 - block 2: 0x0000_8000-0x0000_8800
 - block 3: 0x0001_0000-0x0001_0800
 - block 4: 0x0001_8000-0x0001_8800

CRC Calculation Algorithm

When opening a file, verifying and reading the data, the CRC of data is displayed. CRC

calculation algorithm is shown below:

uint16_t calcCrc16(uint8_t *data, uint32_t size, uint16_t crc)
{
 while (size--)
 {
 int i;
 uint8_t byte = *data++;

 for (i = 0; i < 8; ++i)
 {
 uint32_t osum = crc;
 crc <<= 1;
 if (byte & 0x80)
 crc |= 1 ;
 if (osum & 0x8000)
 crc ^= 0x1021;
 byte <<= 1;
 }
 }
 return crc;
}

The data CRC is calculated as presented below to provide the compatibility with the Crc16

function from the bootloader:

uint8_t zero[2] = { 0, 0 };

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 15

uint16_t crc = 0;

crc = _calcCrc16(someData, someDataSize, crc);

crc = _calcCrc16(zero, 2, crc);

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 16

Working with Script Files

There is a possibility to perform the JS-code from the file before writing, erasing or reading

of the memory. You need to add tag to a *.flash file:

<flash_device>
 …
 <js>script.js</js>
 …
</flash_device>

The global variable «event» was added to provide the ability to determine the current

event. An example which demonstrates possible states of the «event» variable is shown below:

 if(event == "save")
 {
 // script is called before read to file procedure
 }
 else if(event == "program")
 {
 // script is called before write to memory procedure
 }
 else if(event == "erase")
 {
 // script is called before erase procedure
 }

Currently, the following functions are available:

 void dap.showMessage("Text") – shows message in program status field;
 unsigned int dap.readMemory32(unsigned int adr) – reads memory at

a given address;
 bool dap.writeMemory32(unsigned int adr, unsigned int val) –

writes data to the memory at a given address. Returns «true» if writing was
successful;

 unsigned int dap.readDpReg(unsigned int reg) – reads the register
Debug port;

 bool dap.writeDpReg(unsigned int reg, unsigned int val) – writes
to the Debug port register. Returns «true» if writing was successful;

 unsigned int dap.readApReg(unsigned int reg) – reads the Access
port register;

 bool dap.writeApReg(unsigned int reg, unsigned int val) – writes
to the Access port register. Returns «true» if writing was successful.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 17

The example of the script for the microcontroller NRF52XX is shown below:

var reg, result;

dap.writeDpReg(0x08, 0x01000000); // Switch to second AP (0x08 - DP_SELECT)
reg = dap.readApReg(0x0C); // 0x0C (APPROTECTSTATUS) Protection status AP

if(reg === 0) // 0 = protection is enabled
{
 dap.showMessage("Disable access port protection: start");
 dap.writeApReg(0x04, 0x00000001); // 0x04 (ERASEALL) – erase full FLASH

 while(dap.readApReg(0x08) === 1){}; // 0x08 (ERASEALLSTATUS) – FLASH erase status
 dap.showMessage("Disable access port protection: done");
}
else
 dap.showMessage("No protection enabled");

dap.writeDpReg(0x08, 0x00000000); // switch to first AP (0x08 - DP_SELECT)

result = "Success";

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 18

Problems Solving

If there is an error notification or a failure of the utility, a log, containing the diagnostic

information, can be created – launch the program with the «-d» option. A logFile.txt will be created

in the program directory.

If you find an error in the manual or a problem in the software, please report it to us

(support@milandr.ru) and we will try to assist you as soon as possible.

User Guide
The CMSIS-DAP Utility and Debugger for Chips with CORTEX-M and RISC Cores

© JSC «ICC Milandr» Version 1.1 19

Manual versions

№ Date Version Summary Description

1. 30.03.2022 1.0 Document was created -

2. 14.07.2022 1.1 Changed:
Figures

Added:
the links to the figures and tables;
the descriptions of the loaders

Follow the text, 13-15

